

Putting Climate Projections to Use

Climate Change = More Floods, Bigger Floods

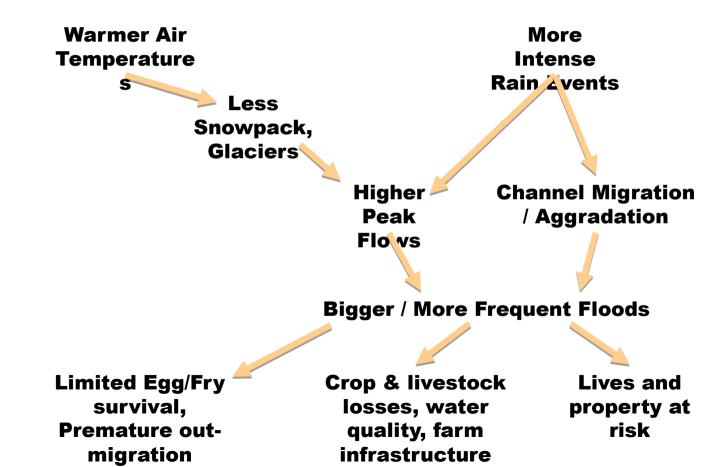
Sea Level Rise

Heavy Rains

Snowpack

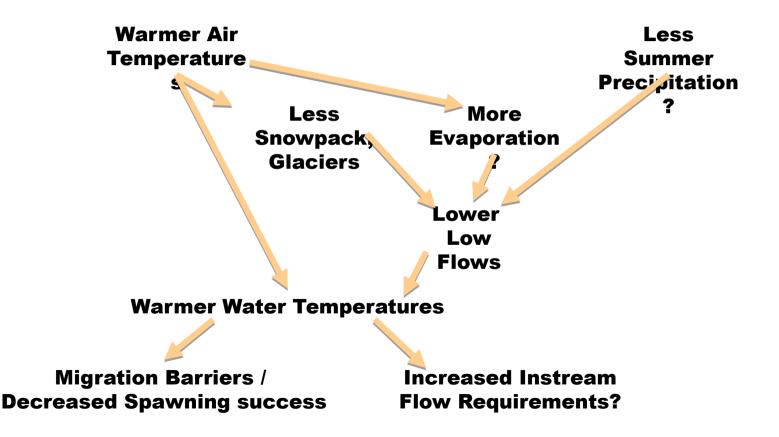
Climate Impacts Everyone/Everything

					<u>) T</u>	TΩ	rc	<u>'n</u>		/				
			Fish				Farm					Flood		
(Example from P	ierce County)		Egg to Fry Survival	Out-Migration	Rearing	Spawning	Crop Health/Growth	Water Supply	Flooding	Drainage	Channel Migration	Flooding	Stormwater	Channel Migration
	Constant	Magnitude												
	Growing Season	Duration												
	500501	Min. Temp.												
	Snowmelt	Timing												
	Low Flow	Magnitude												
	LOW FIOW	Timing												
	Water	Maximum												
	Temperature	Timing												
	Procipitation	Maximum												
	Precipitation	Timing												



Climate Impacts Everyone/Everything

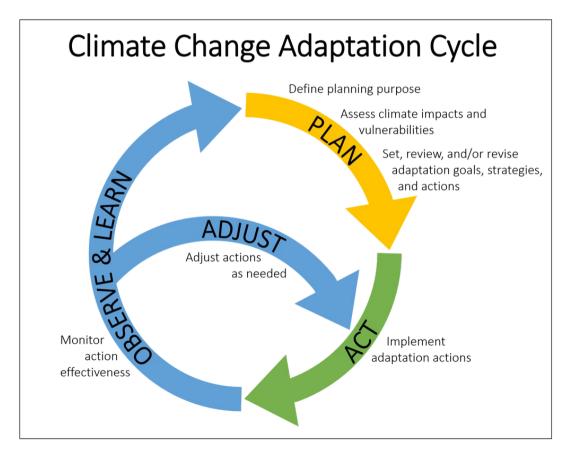
					<u>) †</u>		rc	n.		/				
				Fi	sh				Farm				Flood	
(Example from P	ierce County)		Egg to Fry Survival	Out-Migration	Rearing	Spawning	Crop Health/Growth	Water Supply	Flooding	Drainage	Channel Migration	Flooding	Stormwater	Channel Migration
		Magnitude												
	Peak Flow	Timing												
		Duration												
		Transport												
	Sediment	Grain Size												
		Timing												
	Sea Level	Elevation												
	Sea Level	Timing												
		Elevation												
	Groundwater	Salinity												
		Timing												



athway from Climate Change to Impacts Can be Complex

athway from Climate Change to Impacts Can be Complex

Planning for climate change is about risk


Climate change is NOT the only stressor

... it only matters if it's bigger than other factors.

Planning for climate change is going to be iterative

So How Do I Assess Impacts?

Conservation Biology

Special Section

Choosing and Using Climate-Change Scenarios for Ecological-Impact Assessments and Conservation Decisions

AMY K. SNOVER,* ‡‡ NATHAN J. MANTUA,*† JEREMY S. LITTELL,*‡ MICHAEL A. ALEXANDER,§ MICHELLE M. MCCLURE,** AND JANET NYE††

*Climate Impacts Group, University of Washington, Box 355674, Seattle, WA 98195, U.S.A.
*National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center, 110
Shaffer Road, Santa Cruz, CA 95060, U.S.A.
*Department of Interior Alaska Climate Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, U.S.A.
\$NOAA, Earth System Research Laboratory, R/PSD1, 325 Broadway, Boulder, CO 80305-3328, U.S.A.
**National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725
Montlake Boulevard East, Seattle, WA 98112, U.S.A.

††School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, U.S.A.

Snover et al., *Cons. Bio., 2013* **Abstract:** Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientific and decision makers, we devised guidelines for choose of the current proliferation of climate science working with natural resource scientific assessment that vacourize irreducible uncertainty in climate

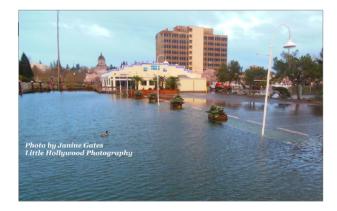
Choosing & Using Scenarios

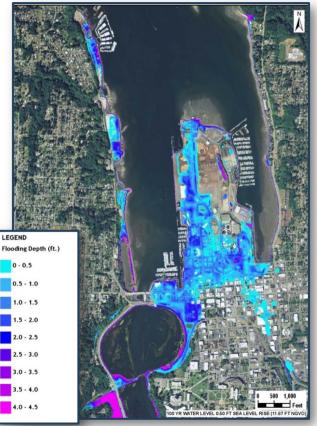
Information / Context	Expertise
 Conceptual model: Understanding of system Sensitivity to climate 	Manager, Biologist, Engineer, etc.
 2. Climate science: Climate effects on system Able to simulate? Spatial resolution Time scales (variability v. trend 	Climate scientist
 3. Decision context: • Robust v. most likely • Best vs. worst case • Time horizon 	Policymaker Risk Tolerance

So How Do I Assess Impacts?

1. Observations a lot about the consequences of past events. We can often find out how much more likely these events will be by looking at off-the-shelf climate reports or datasets.

2. Modeling

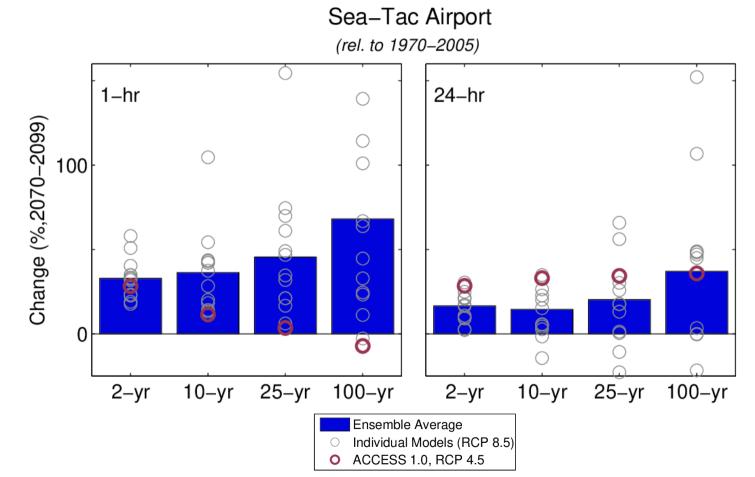

Some changes are beyond the realm of what we've seen in the past (e.g., loss of winter snowpack). Observations are also limited in where they are available; models offer 100% coverage.



Example: Using Observations

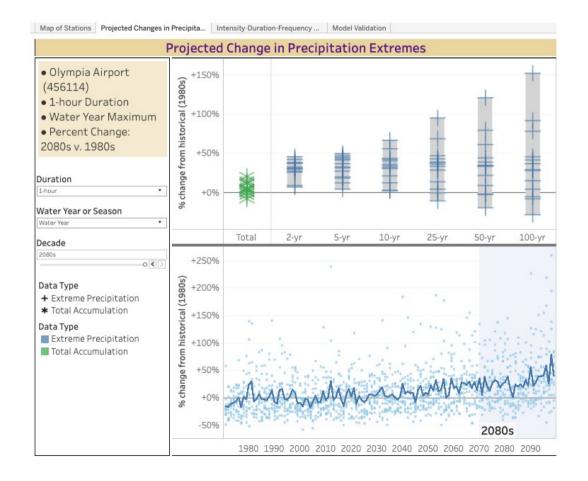
Coastal Flooding

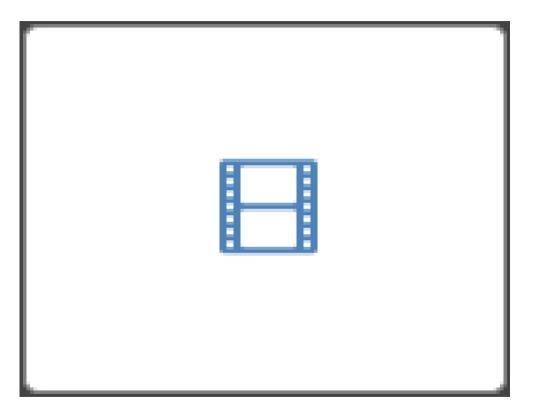
With 24" of sea level rise in Olympia, *the 100-year flood event would become an annual event*.



Snover et al., 2013, Mauger et al., 2015

Example: Using Modeling


https://cig.uw.edu/our-work/applied-rese arch/heavy-precip-and-stormwater/


Example: Using Modeling

https://cig.uw.edu/our-work/applied-re search/heavy-precip-and-stormwater/

Example: Using Modeling

CLIMATE IMPACTS GROUP

https://cig.uw.edu/our-work/decision-support/culvert-phase -2 /

Guillaume Mauger gmauger@uw.edu

