Incorporating Uncertainty into Integrated Regional Water Resources Planning

Abhishek Singh, PhD, PE

ENCE & ENGINEERING SOLUTIONS

Oct 1, 2019

Planning under Uncertainty

- Planning with certainty is a rare luxury
- Planning under uncertainty is the norm

Outline

- Planning under uncertainty
- 5-steps for uncertainty assessment
- Case-Study Texas water planning
- Lessons learned

The Planning Process

Planning under Uncertainty

Alternatives?

"Political and economic uncertainty make long term planning difficult. Let's stick to ordering lunch."

Account for uncertainty

Planning under Uncertainty

• How do we maximize our chance of success given everything we do not know?

5-step Program

- 1. Identify Uncertainties
 - Known Unknowns/Unknown Unknowns
- 2. Characterize Uncertainties
- 3. Relate Uncertainty to Key Decisions
- 4. Assess Sensitivity to/Importance of Uncertainties
- 5. Manage Uncertainty
 - Reduce Uncertainty
 - Increase Reliability/Reduce Risk
 - Increase Resilience
 - Monitor, Measure, and Adapt

Case Study

Analyzing Uncertainty and Risk in the Management of Water Resources for the State of Texas

by

Abhishek Singh, Ph.D. Srikanta Mishra, Ph.D. Richard J. Hoffpauir A. Marsh Lavenue, Ph.D. Neil E. Deeds, Ph.D., P.E. Charles S. Jackson, Ph.D.

Texas Water Development Board

P.O. Box 13231, Capitol Station Austin, Texas 78711-3231

Texas Water Planning Framework

- Regional water planning process for resilient water supply
 - Drought of record
 - Deterministic
- Stake-holder driven process
 - Regional water planning groups
- 50-year planning horizon
 - Updated every 5 years

Objective

 Methodology to inform decision-makers how to characterize and account for uncertainty in regional water resources planning

Build on the current (deterministic) water planning framework

Methodology

Uncertainty Characterization

- Uncertainty in demand
 - Population projections
 - Water usage rates
- Uncertainty in supplies
 - Water supplies in future droughts
 - Climate-change impacts
- Create multiple demand and supply scenarios

Demand Scenarios

• 6 Pop. Proj. x 3 usage rate = 18 demand scenarios

Supply Scenarios

- LCRA/SAWS Climate Change Study used as basis for modeling uncertainty in climate
- 2 GCMs x 2 Future
 Emission Scenarios + 1
 Baseline = 5 Supply
 Scenarios

Supply Scenarios

Climate scenario	No Climate- Change	CCSM-A2	CCSM-B1	GFDL-A2	GFDL-B1

Water Needs Scenarios

Water Need = Water Demand – Water Supply

Water Needs Scenarios

Evaluating Projects

- Baseline strategy = Conservation and Reuse (C&R)
 - Meets (deterministic) projected water needs (10,000 AFY)
 - Only 22% reliable

Evaluating Projects

• 6 potential strategies to meet the deficit

Strategy ID	Strategy	Capital cost (\$ million)	Expected yield ¹ (ac-ft/yr)

Project Portfolios

Strategy Sets	Strategies considered	Capital cost (\$M)	Expected total yield (ac-ft/yr)	Reliability
А	Conservation and reuse	1	12,000	22%
в	Conservation and reuse GW development	31	42,000	45%
С	Conservation and reuse Wastewater reuse	21	62,000	57%
D	Conservation and reuse Pipeline	61	62,000	57%
E	Conservation and reuse Reservoir	151	87,000	76%
F	Conservation and reuse Wastewater reuse GW development	51	92,000	85%
G	Conservation and reuse Wastewater reuse Pipeline	81	112,000	88%
н	Conservation and reuse Wastewater reuse GW development Pipeline	111	142,000	94%
I	Conservation and reuse Wastewater reuse Desalination Pipeline	171	152,000	98%
J	Conservation and reuse Wastewater reuse GW development Reservoir	201	167,000	99%
к	Conservation and reuse Wastewater reuse GW development Pipeline Reservoir	261	217,000	100%
L	(ALL) Conservation and reuse Wastewater reuse GW development Desalination Pipeline Reservoir	351	257,000	100%

Cost-Reliability Trade-Off

Sensitivity to Uncertainty

Sensitivity to Uncertainty

Summary

- Framework to plan under uncertainty based on existing planning framework
- Identified and characterized key uncertainties in demands and supplies
- Developed project portfolios to improve reliability of water plan
- Evaluated trade-offs in cost and reliability to rank and select project portfolios
- ullet

Other Planning Studies...

Albuquerque Bernalillo County Water Utility Authority

Other Planning Studies...

Integrated Water Resources Plan

March 27, 2019

Scenario 1: Loss of Imported Water

Scenarios 4 & 5: Water Quality Impairment

Scenarios 2 & 3: Water Supply Allocation Plan, Multi-Year Drought

Scenario 6: Water Management

Lessons Learned

- Demonstrate importance of considering uncertainty
 'Baseline' solution not reliable
- Having a well-defined deterministic planning framework is key
- Start simple easier to communicate ideas to stakeholders
 - Sequentially add 'layers' of uncertainty
 - Scenarios keep things 'real'
 - Sensitivity analysis shows importance of different uncertainties
- Enables more robust decision making
- •

It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.

Mark Twain ?

