Hydrologic sensitivities to climate change in the **Columbia River Basin**

Julie Vano^A and Dennis Lettenmaier^{A,B}

in collaboration with Tapash Das^c, David Pierce^D, Daniel Cayan^D, and Alan Hamlet^{A,B}

^ADept of Civil & Environmental Engineering, University of Washington ^BClimate Impacts Group ^cCH2MHill, San Diego, CA ^pScripps Institute of Oceanography, UC San Diego

September 13, 2012 WA-AWRA 2012 Annual Conference, Ellensburg, WA

Intergovernmental Panel on Climate Change (IPCC) 2007

Consensus Forecasts of Temperature and Precipitation Changes from AR4 GCMs

Climate Change in Columbia River basin

Figure from Washington State Climate Impacts Assessment Report, 2009. All changes are relative to 1970-1999 averages.

Columbia River Basin

•

Hydroclimate diversity:

- <u>Precipitation varies</u> with annual averages of less than 15 cm to more than 500 cm
- <u>Vegetation</u> and <u>soil types</u> vary
- <u>Flow</u> at Dalles varies from 36,000 to 1,240,000 cfs (1:34 ratio)

Unique management challenges:

- Most <u>hydropower</u> capacity in N. America (~37 GW)
 - <u>Flood control</u> regulation problems
 - International management, Columbia River Treaty Review 2014/2024
 - Increasing environmental pressures

Global Climate Models

downscaling, bias correcting

> Hydrology Models

stream routing, bias correcting

> Water Supply Operations Models

> > **Climate Impact**

Hydrologic sensitivities approach

Global Climate Models

maps of sensitivities to temp & precip change

Changes in Central Tendencies

Hydrologic Sensitivity Method

Hydrologic Model

Variable Infiltration Capacity (VIC) Unified Land Model (ULM) Catchment Land Surface Model

Spatially...

 $1/16^{\circ}$ lat-lon 226 subbasins

Measures of runoff (Q) change

 $Q_{ref+\%\Delta} - Q_{ref}$ Precipitation _ Elasticity

Temperature _ Sensitivity

%Δ $Q_{ref+\Delta^{\circ}C}$ - Q_{ref} Q_{ref} Δ°C

 $\mathbf{Q}_{\mathrm{ref}}$

Seasonally...

- warming applied annually
- warming applied in warm season only (Apr-Sep)
- warming applied in cool season only (Oct-Mar)

Seasonal differences (3°C warming) at the Dalles

Figures from Das et al., 2011 in Geophysical Research Letters, color scheme modified

Columbia Basin at 1/16th degree Annual Responses (VIC)

Year-Round Warming Warm-Season Warming

Cool-Season Warming

Example watersheds:

Legend

Categories of sub-basin responses to changes in seasonality

Responses in:

annual flow

warm season flow

cool season flow

Differences in warm and cool season responses when warming applied in cool season only

Global Climate Models

downscaling, bias correcting

> Hydrology Models

stream routing, bias correcting

> Water Supply Operations Models

> > **Climate Impact**

Hydrologic sensitivities approach

Global Climate Models

maps of sensitivities to temp & precip change

Changes in Central Tendencies

Multi-Model Approach in the Yakima

Future scenarios: Long-term annual average

Summary

Hydrologic sensitivities approach

Hydrologic sensitivities approach:

- Provides insights on how the land surface will respond spatially to changes in temperature and precipitation independently
- Quick calculations, provide an estimate of long term average runoff change, can use multiple hydrology models
- When future changes applied, results more conservative and do not capture seasonality

Multi-model approach, in contrast:

- More computationally-intense
- Provides daily values to run through operation models
- Results have precipitation and temperature combined in land surface processes, more realistic seasonality

Together they provide complimentary methods to understanding future uncertainties in Columbia River water supply.

Acknowledgements

- Collaborators: Marketa McGuire Elsner, Nathalie Voisin, Michael Scott, Alan Hamlet, Kristian Mickelson, Tapash Das, David Pierce, Dan Cayan
- Chris Lynch, US Bureau of Reclamation, Yakima Project
- Research funding provided by the PNW Climate Impacts Research Consortium (CIRC) of the NOAA, RISA collaboration and the U.S. Department of Energy Climate and Earth System Modeling Program

Questions? Suggestions?

Julie Vano jvano@uw.edu