Groundwater Storage

WA-AWRA Conference, Sept. 26, 2013 Seattle, WA

Chris Pitre, L.Hg, CWRE

Forms of Storage

Talk Outline

- Basics of ASR
- Water right variables
- **■** Recoverable quantity
- Water quality issues
- **■** Comparative cost
- What's needed to move forward

Basics for Successful ASR

SUITABLE AQUIFER

THIS AN ABSOLUTE MUST

The Rest Can Be Engineered

- Available water
- Compatible geochemistry
- Need or other benefit
- Adequate infrastructure
- Regulatory framework
- Opportunity

WATER RIGHT VARIABLES

- Water rights needed:
 - Primary water right for the source water to be recharged:
 - Existing (e.g., inchoate, municipal)
 - New (e.g., off season, high stream flow period)
 - Reservoir permit (RCW 90.03.270/WAC 173-157; includes secondary permit)
- Methods for determining the <u>amount of water that can be</u> <u>recovered</u> is not prescribed.
- This is appropriate given the range of hydrogeological settings.
- However, clarity/confidence is needed.

RECOVERABLE QUANTITY = RESIDUAL INCREASED STORAGE.

Recoverable Quantity

Do you get back what you put in?

- Recoverable quantity is a technical criteria based on water balance.
- Conceptual and computer simulation models are useful.
- Calibrated to pumping tests and long-term regional water level data.

Sometimes

- Water that seeps out/leaks away is not recoverable.
- Recoverable quantity usually decreases with time in storage.
- Water can remain in storage for years.

Recoverable Quantity - Examples

- Well-contained areas = high recoverable quantity:
 - Mined groundwater areas (low recharge in; storage created)
 - Geologic structural controls (e.g., basins, block-faulted basalt)

■ Walla Walla, TVWD (basalt): >90% (@1 yr; modeled, validated)

■ Yakima (Sandstone): 95% (@1 yr)

60% (@10 yrs; modeled)

- Walla Walla (sand & gravel): 33% (@1 year; seepage augments streamflow)
- Oregon routinely permits 95% recovery without involved analysis – and allows carry-over of credits from year to year.

Recovery Efficiency ≠ Recoverable Quantity

- Recovery efficiency is based on usable water quality.
- E.g., when storing fresh water in brackish systems.

Water Rights: Water Quantity = Recoverable quantity

Water Use/Purpose: Water Quality = Recovery efficiency

Total Storage after 10 years (YBIP) (deep Ellensburg Fm. Ahtanum Valley)

Water level rise (feet) after 10 yrs of seasonal injection and no recovery.

50,000 af recharged – 30,000 af remains in storage = 20,000 af leaks to stream

Points of Recovery

Aquifer Storage, TRANSFER and Recovery (ASTR)

- Recharge in one part of the basin
- Recovery in other parts of the basin a water balance basis
- Recovery of same molecule not required and may not be preferred, e.g.:

ASR: Recharge and recovery in same well

- Stormwater
- Reclaimed water
- "Indirect Potable Reuse"
- Used in California, Australia

ASTR: Recharge and

recovery in different wells Post End use Capture zone Pre-Recharge Recovery treatment treatment Low permeability Piezometric level confining layer Subsurface 4 Ambient Confined aguifer groundwater

Reclaimed Water Recharge

Technical Issues

- Production is constant Demand is typically variable
- Groundwater recharge provides complementary balance
- Requires nitrogen removal

Water Right Issues

- Must respect streamflow reliance on existing discharges
- Can mitigate impacts from new withdrawals
- New water right if it is water balance neutral

Regulatory Issues

- Guidelines exist
- Draft rule in preparation (WAC 173-219)
- Refers to WAC 173-200 criteria
- Local rules may also apply (e.g., county)

Water System Operations

 Storage needed for fire flow, backup, emergency.

2 MG

- Conventional storage:
 - → \$2M, 2 MG, ½ day supply*
- ♦ ASR (per well):
 - → ~\$2M, indefinite supply*
- Allow new wells for system reliability/balance.

*@3,000 gpm

CLOGGING

CITY OF TIGARD

ASR PILOT TEST

SAMPLED

2/6/2002

System Scale

- Source Water
 Suspended Sediments –
 Control with source water filtration.
- <u>System scale</u> Control with system flushing.

System Flushing

- In-well sediment clogging Sometimes easily reversed by back flushing of well.
- **Biofouling** control with disinfection.

Major Water Quality Considerations

Operational (clogging):

- Biofouling prevent with residual chlorine.
- Suspended sediment prevent by system flushing O&M.
- Air entrainment prevent with full pipe flow

2. Regulatory

- Anti-degradation of Groundwater (WAC 173-200; e.g., disinfection products)
- Drinking Water (e.g., release of heavy metals from sulfide mineral oxidation)

Anti-Degradation of Groundwater (WAC 173-200)

■ Chlorination DBPs are a concern (e.g., TTHMs)

■ Trichloromethane regulatory limits:

Federal SDWA: 80 ppb (as TTHM)

• Oregon ASR: 40 ppb (as TTHM; 50% of SDWA)

• WAC 173-200: 7 ppb (as Trichloromethane)

- 15-50 ppb Trichloromethane is typical in chlorinated drinking water
- **AKART** analysis Treatment is expensive, and may add costs for biofouling control.
- **OCPI** is used to allow variances requires 5 year reviews.

DBPs = Disinfection byproducts
TTHM = total trihalomethanes
RO = Reverse osmosis
AKART = All Known Available and Reasonable Technologies
OCPI = Overriding Consideration in the Public Interest

Chlorination Disinfection DBPs

Reactions in the Aquifer

Oxygenated recharge water

+ reduced aquifer minerals

= Oxidation of sulfide minerals?

- Potential release of trace elements (e.g., As)
- Has happened in other areas (e.g., FL [Arsenic], WI [Cobalt])
- Has not happened yet in the PNW.

Walla Walla – Setting

- 1900s: Groundwater levels dropped (agriculture).
- 1940s: Population growth strains Mill Creek water supply.
- 1940s-1960s: City drills wells.
- 1950s: USGS tried ASR fails (clogging & cascading water).
- 1999: City starts ASR program (for peaking, backup, emergency).

Walla Walla – ASR Program

- Recharge water is not filtered (control turbidity, recharge at high rates)
- Recovery when Mill Creek has: High turbidity
 - Low streamflow
- Groundwater levels have been restored.
- 2005: ASR application submitted (>90% recovery modeled).
- Part of city's sustainable water program.

Reclaimed water for irrigation & spring creek flows

In-line hydropower

Cost Comparisons

Conventional water costs:

- Water right: **\$1,000-\$10,000**/afy (water market)
- Seasonal storage: \$6,000/af (Wymer)
- Infrastructure storage: \$2M (2 MGD)

♦ ASR costs:

- Water right: \$0.5M? (water right processing)
- Seasonal storage: Zero (using Mother Nature's aquifer)
- Infrastructure storage: \$2M (per 4 MGD well)

IN CONCLUSION

ASR

- Can increase reliability of supply at a competitive cost.
- Is responsible water resource management with environmental benefits.

Recoverable Quantity

- Is a technical water balance question to be answered with modeling and water level data.
- Some loss should be expected.
- Real credit should not be arbitrarily lost after one year.

Water Quality

- Should not be used to determine recoverable quantity.
- A process for variance from WAC 173-200 should be maintained (OCPI or Legislative fix).

Thank you!