

Basin-Wide Infiltration Assessment using GIS Techniques

Presented by:

Aspect Consulting, LLC

J. Scott Kindred, PE

It hasn't always been popular to add more water to the ground

Proceed with Caution...

LID Requires Good Site Characterization

Perched
Groundwater
on Glacial
Till

Perched Water Table before GSI (LID)

Perched Water Table after GSI (LID)

Deep Infiltration Drain Can Substantially Improve Infiltration at a Glacial Till Site

Conclusion:
Deep drains are cost
effective when native soil
infiltration rate < 2 in./hr.

Case Study

- Clear Creek Basin (Silverdale)
- Kitsap County LID Retrofit Program
- Objective is to reduce fecal coliform and restore estuarine health to Dyer Inlet
- Team led by Herrera Environmental and funded in part by an EPA grant
- Aspect tasked to estimate the suitability of infiltration and identify potential geologic hazard areas

Key Factors

- Surficial geology (permeability)
- Wetlands
- Surface slope gradient
- Proximity to steep slopes
- Depth to groundwater
- Depth to permeable zone (deep infiltration only)
- Thickness of unsaturated zone (deep infiltration only)

Geologic Map

- Qvt over most of the project area
- Qvr and alluvium in valley bottom
- Outcrops of Qva on hillsides

Kahle, S.C. 1998, Hydrogeology of Navel Submarine Bangor and Vicinity

Permeability Categories

Surficial Geologic Units: Permiability Category

G1 (good) - coarse outwash/alluvium

G2 (moderate) - slightly silty outwash/alluvium

G3 (poor) - till or other silty/clayey soil

Steep Slope Proximity

Proximity to Steep Slopes

More than 300 feet from Steep Slope (SS1)

Between 100 and 300 feet from Steep Slope (SS2)

Within 100 feet of Steep Slope (SS3)

Surface Slope

Surface Slope Percent (from USGS DEM)

< 5% (S1)

5 to 15% (S2)

> 15% (S3)

Depth to Shallow Aquifer

Depth to Shallow Aquifer

Depth to Qva Aquifer

Depth to Qva Aquifer

Depth to Groundwater Combined Analysis

Depth to Groundwater Analysis Classification

More then 20 feet (GW1)

10 to 20 feet (GW2)

Less than 10 feet (GW3)

Perched (GWp)

Thickness of Target Unsaturated Zone

Thickness of Target Unsat Zone

20 or more feet (U1)

0 to 20 feet (U2)

Less than 0 feet - confined (U3)

Qva Water Level Elevation Contours (Interpreted from Kahle, 1998)

Depth to Qva Classification

Depth to Qva: Analysis Classification

Less than 20 feet (D1)

20 to 70 feet (D2)

More than 70 feet (D3)

Shallow Infiltration Factors

- Surficial geology (permeability)
- Wetlands
- Surface slope gradient
- Proximity to steep slopes
- Depth to groundwater

Shallow Infiltration Feasibility

Shallow Infiltration Feasibility:

Deep Infiltration Factors

- Wetlands
- Proximity to steep slopes
- Depth to permeable zone
- Thickness of unsaturated zone

Deep Infiltration Feasibility

Deep Infiltration Feasibility:

More Information

J. Scott Kindred, PE
Associate Water Resources Engineer
skindred@aspectconsulting.com
206.838.6589

Bainbridge Island - Mount Vernon - Seattle - Wenatchee

Perched Groundwater Can Limit Observed Infiltration Rate

Stand-Alone Drilled Drain Completion Detail

- Typically 2-3 ft in diameter
- Backfilled with Pea Gravel
- Type 2 Structure
- Piezometer
- May include surface casing

Regulatory Considerations

- Most deep drains are Class V underground injection control (UIC) wells
 - Must be deeper than their widest dimension or contain perforated pipe
 - Department of Ecology regulates UICs (requires permit)
 - Guidance for UIC Wells that Manage Stormwater (Ecology, 2006)
- UICs are standard practice in Eastern Washington
- Raingardens are not UICs

Deep Drain Costs and Benefits

- Requires hydrogeologic assessment (cost variable, assume \$10,000)
- Depending on thickness of low permeability soil, cost of drain between \$1,000 (dug) and ~\$20,000 (drilled and cased)
- Raingarden with deep drain provides ~50,000 gal of control volume

Cost per gallon of control volume <\$2.6 per gallon