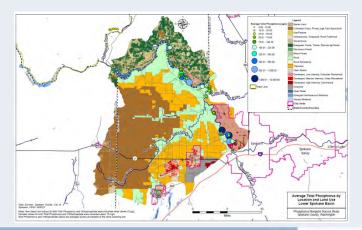
2011 American Water Resources Association Washington State Conference A Perspective on Water Quality Issues across Washington State

Strategies and Implementation for Reducing Phosphorus Loading with a Focus on the Spokane River

Michael Kasch, HDR October 4, 2011

Nonpoint Source Pollution

- Any unconfined diffuse sources
 - Atmospheric deposition
 - Surface water runoff from land uses
 - Urban/suburban
 - Agriculture
 - Forestry
 - Subsurface and groundwater
 - Septic systems
 - Gaining river reaches



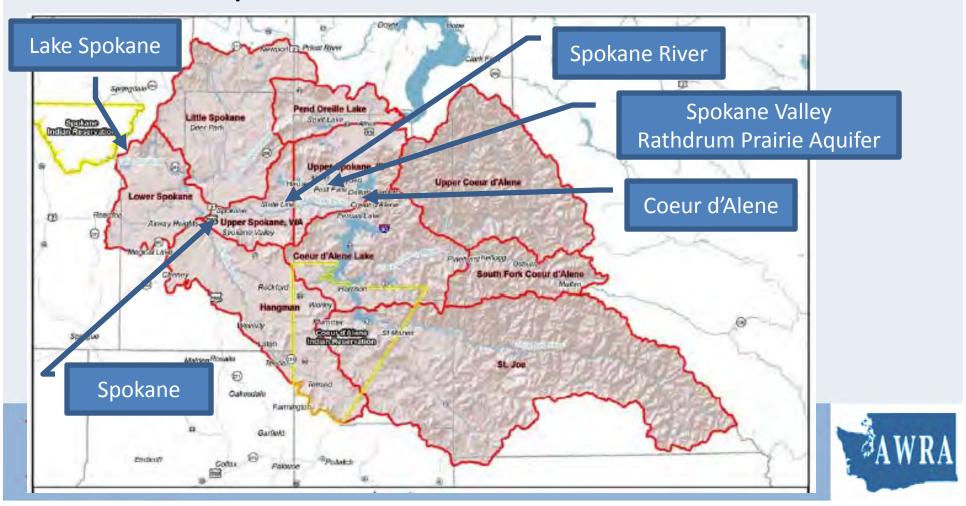
Point versus Nonpoint Sources

- Point Sources
 - Single location
 - Single entity
 - NPDES permits
 - Typical discharge patterns

- Nonpoint Point Sources
 - Watershed
 - Multiple entities
 - Voluntary
 - Variable

Managing Nonpoint Sources

- Necessary to meet water quality standards
- Necessary as point sources are reduced to near zero
- More cost effective than reducing point sources
- Reduced by using best management practices



Spokane River Watershed

• 6,600 square miles

Bi-State Nonpoint Source Phosphorus Study and Reduction Plan

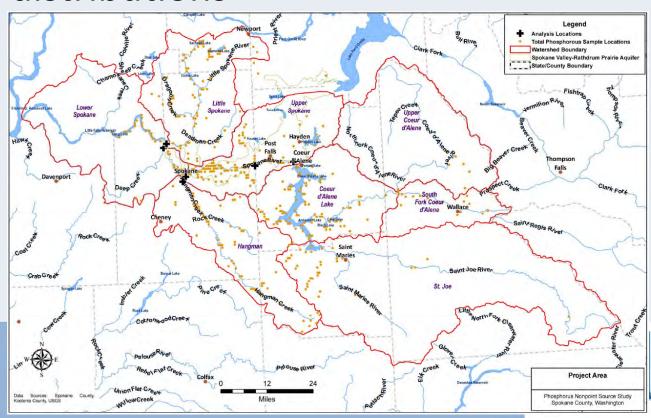
- Nonpoint source (NPS) loading analysis
- NPS Reduction Plan includes 100+ recommended actions in eight categories
- Target nonpoint sources with best management practices (BMPs)
- Sources throughout the basin contribute to the reductions

History

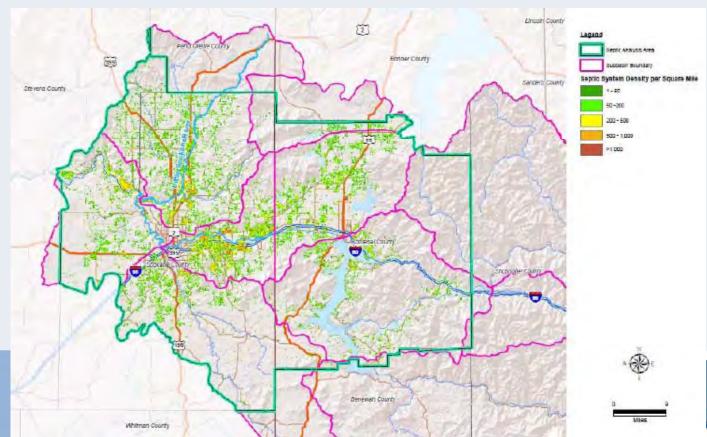
- Overview of NPS Study and NPS Reduction Plan
 - Identified as needed during dissolved oxygen TMDL development
 - Began in 2007
 - NPS Study Evaluation: Completed Spring 2011
 - NPS Reduction Plan: To be finalized December 2011
 - Provide framework for NPS phosphorus reductions
- Nonpoint Advisory Committee (NPAC) meetings
 - Held eleven meetings
 - Reviewed and discussed NPS Study
 - Discussed NPS Reduction Plan content

Nonpoint Source Study Outcomes

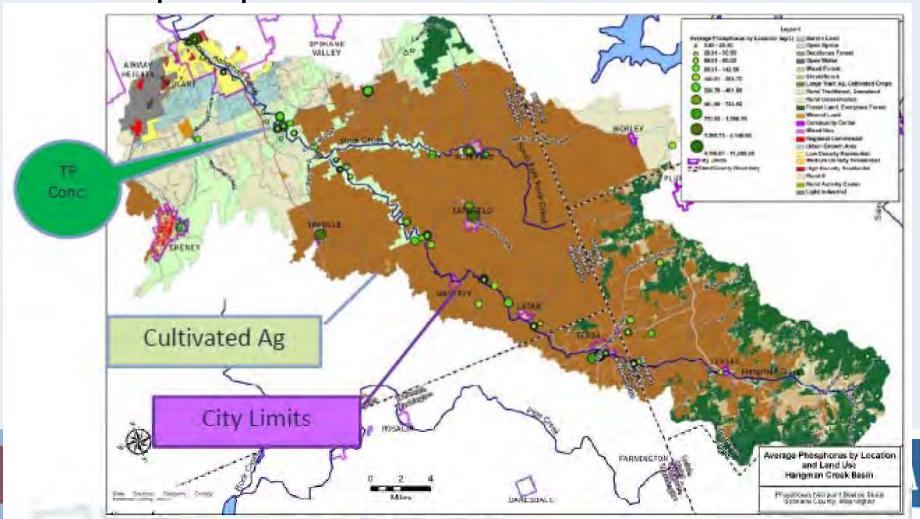
- Watershed-scale database
 - Credible data review
 - Phosphorus species
 - Total suspended solids
 - Flow

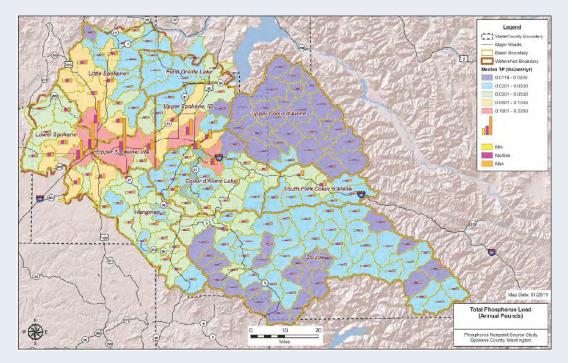

- Septic tank distribution evaluation
- Watershed-scale data gap identification and prioritization
- Deep Creek and Eaglewood field data collection
- Evaluation of analytical methods
- Data analysis and modeling for both surface water and groundwater
- Local and global BMP review and evaluation
- NPS Reduction Plan

Watershed Database


- Approximately 15,000 data post-1990 deemed relevant and credible from 100+ reports
- Inconsistent distributions
 - Spatial
 - Temporal
 - DetectionLimits

Septic Systems in Spokane River Watershed


 Large number of septic systems remain in the watershed for future management consideration


Example - Hangman Creek Subbasin

Total phosphorus data correlate with

Watershed Scale Loading Analysis

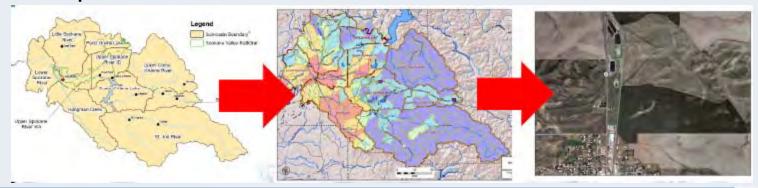
- Objectives
 - Estimate nonpoint source loads
 - Not fate and transport modeling
- Model Selection Process
 - Available data
 - Limited schedule and budget
- Selected PLOAD model
 - Nonpoint source load from land uses
 - Annual aerial loading factor
- Customized optimization routine

Best Management Practices Review

Review and Evaluate

- Objectives
 - Identify BMPs appropriate for Spokane River watershed
 - Identify BMPs for different land uses and sources
- Gather information
 - Literature review
 - Survey of local and national experts
- Linkage to PLOAD results

Prioritization Considerations


- Applicability
- Source reduction
- Proximity to waterbody
- Proximity to Lake Spokane
- Construction and maintenance costs
- Monitoring requirements and feasibility
- Estimated cost per unit phosphorus reduction
- Regulatory feasibility
- Level/likelihood of citizen/landowner cooperation
- Implementation schedule
- Duration of performance

Application of Study Findings

- Combine the Analysis, PLOAD modeling, BMPs, and source identification
 - Into watershed and basin activities
 - Intermediate step to selecting local BMPs
- Local Stakeholders and Land Managers
 - Select activities for detailed, site specific BMPs
 - Implement

Bi-State Study to Nonpoint Source Reduction Plan

- NPS Reduction Plan
 - Capture and summarize the Bi-State Study
 - Capture and acknowledge ongoing subbasin efforts
 - Support continuation of reduction activities
 - Provide recommendations for future efforts
 - Supply justification for agency leaders to do projects
 - Provide foundation for obtaining funding

Outline of Nonpoint Source Reduction Plan

- Executive Summary
- How to Use this Plan
- Chapter 1 Background and Issues
- Chapter 2 TMDL and Nonpoint Sources
- Chapter 3 Subbasins and Land Uses
- Chapter 4 Watershed Data
- Chapter 5 Field Data
- Chapter 6 Groundwater Analysis
- Chapter 7 Surface Water Analysis
- Chapter 8 BMPs

- Chapter 9 Watershed
- Chapter 10 Lower Spokane River
- Chapter 11 Upper Spokane River WA
- Chapter 12 Little Spokane River
- Chapter 13 Hangman Creek
- Chapter 14 Upper Spokane River ID
- Chapter 15 Coeur d'Alene Lake
- Chapter 16 Upper Coeur d'Alene River
- Chapter 17 South Fork Coeur d'Alene R.
- Chapter 18 St. Joe River
- Chapter 19 Pend Oreille Lake
- Chapter 20 Implementation Considerations
- Chapter 21 Conclusions

Reduction Activities

Chapter 9

Actions – steps from planning through achievements of NPS phosphorus reduction.

BMPs – core of the action.

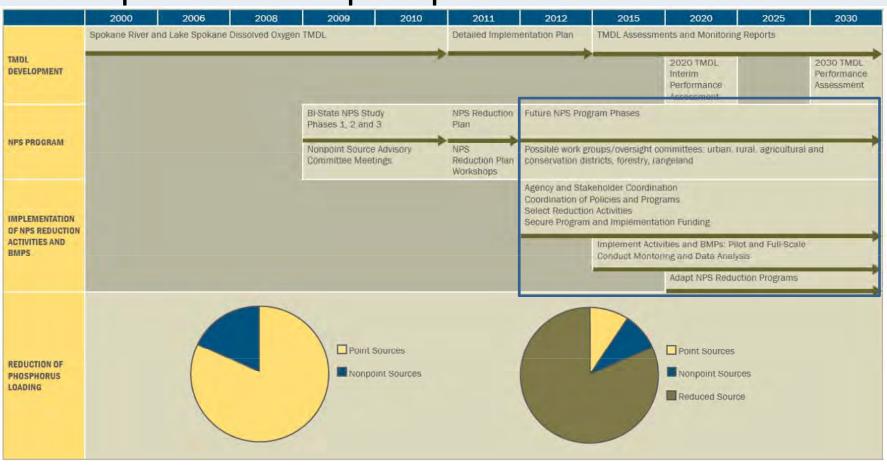
Actions are either land use or support related:

- Agriculture Related Activities
- Forestry Related Activities
- Range Related Activities
- Urban/Suburban Related Activities
- Support Existing and Planned Activities
- Supporting Phosphorus Reduction Activities
- Regional Phosphorus Management
- Additional Activities

Watershed Actions

- Public Education and Outreach Programs
- Spokane River Watershed Phosphorus Trading
- Bi-State Coordination Workgroup
- Evaluate Long-term Trends
- Ongoing Monitoring
- Adaptive Management
- Evaluate and Restore Stream Functions and Stream banks
- Determine Baseline Conditions
- Review Forest Management Actions

Basin Actions


- Fertilizer Application Location and Timing
- Fertilizer Application Rates
- Runoff Management and Treatment
- Crop and Animal Management
- Evaluate Forestry Practices
- Quantify Sediment-Phosphorus Relationships in Forested Areas
- Road Planning and Rehabilitation
- Commercial Forest Management
- Fire Rehabilitation Areas
- Evaluate Rangeland Practices
- Urban Waters Initiative to Reduce Stormwater Pollution
- Evaluate and Revise Stormwater Policies
- Strengthen Requirements in Critical Areas
- Evaluate Septic Loadings
- Septic Tank Elimination Programs
- Coordination and Support of Existing Plans, TMDLs and WRIA activities
- Enforcement of Existing Regulations, Ordinances, Plans

Taking the Nonpoint Source Reduction Plan Forward

 Vision: Subbasin actions are implemented and nonpoint source phosphorus is reduced

